

Ф-Рабочая программа по дисциплине

# утверждено решением ученого совета факультета математики, ин пормационных мавиационных технологий от « 1 № мая 20 21 г. протокол № 4/21 / М.А.Волков « 18 » мая 20 21 г.

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

| Дисциплина | Вычислительная математика                                   |
|------------|-------------------------------------------------------------|
| Факультет  | Математики, информационных и авиационных технологий (ФМИАТ) |
| Кафедра    | Информационные технологии (ИТ)                              |
| Курс       | 2                                                           |

Направление: <u>09.03.03 «Прикладная информатика»</u>

код направления (специальности), полное наименование

Профиль: «Информационная сфера»

полное наименование

Форма обучения: очная очно-заочная (указать только те, которые реализуются)

Дата введения в учебный процесс УлГУ: « 01 » сентября 2021 г.

Программа актуализирована на заседании кафедры: протокол № \_\_\_\_ от \_\_\_ 20 \_\_\_ г. Программа актуализирована на заседании кафедры: протокол № \_\_\_ от \_\_\_ 20 \_\_\_ г.

Программа актуализирована на заседании кафедры: протокол №\_\_\_\_ от \_\_\_\_ 20\_\_\_ г.

Сведения о разработчиках:

| ФИО                           | Кафедра | Должность, ученая степень, звание |
|-------------------------------|---------|-----------------------------------|
| Семушин Иннокентий Васильевич | ТИ      | профессор, д.т.н, профессор       |
|                               |         |                                   |

| СОГЛАСОВАНО                                                         | СОГЛАСОВАНО                                                    |
|---------------------------------------------------------------------|----------------------------------------------------------------|
| Заведующий кафедрой информационных технологий, реализующей дисци-   | Заведующий выпускающей кафедрой ин-<br>формационных технологий |
| плину                                                               | ,,,                                                            |
| //Волков М.А/ (подпись) (Ф.И.О.)  « <u>18</u> » мая 20 <u>21</u> г. | /                                                              |

Форма А Страница 1из 22



Форма

Ф-Рабочая программа по дисциплине

#### 1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Вычислительная математика» знакомит студентов с основополагающими положениями теории и практическими вопросами компьютерной реализации вычислительных методов с акцентом на учет погрешностей вычислений.

Предметом изучения являются основные вычислительные методы решения задач линейной алгебры и математического анализа без попытки охватить все многообразие численных методов.

#### **Цели дисциплины** «Вычислительная математика» –

- заложить базовые знания и умения в области построения и особенностей компьютерной реализации численных методов для систем обработки информации и управления;
- обеспечить понимание фундаментальных концепций в проблемах анализа погрешностей численных методов;
- привить навыки алгоритмического мышления и способность разбираться в приложениях теории численных методов.

Названная дисциплина будет использована при изучении отдельных дисциплин профессионального цикла, а также к применению этих знаний и умений в дальнейшей учебе и практической деятельности и при выполнении курсовых и выпускных работ.

#### Задачи дисциплины – охватить изучением пять базовых разделов, а именно:

- (1) методы Гаусса и Гаусса-Жордана исключения неизвестных в задачах решения систем линейных алгебраических уравнений, отыскания обратной матрицы и вычисления определителя, посредством стандартных и современных векторно-ориентированных алгоритмов LU-разложения,
- (2) методы разложения Холесского положительно определенных матриц, имеющие практическое значение в численных методах оптимизации,
- (3) методы Хаусхолдера, Гивенса и Грама-Шмидта ортогональных преобразований в задачах решения систем линейных алгебраических уравнений, отыскания обратной матрицы, а также при решении переопределенных систем уравнений,
- (4) метод наименьших квадратов в задаче решения произвольных систем уравнений, включая две интерпретации задачи: детерминистскую и статистическую,
- (5) итерационные методы численного отыскания корней линейных и нелинейных уравнений: базовые методы Якоби, Зейделя, Ричардсона, Юнга и Ньютона.

#### 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Вычислительная математика» принадлежит базовой части Блока 1 образовательной программы и читается в 4-м семестре студентам направления <u>09.03.03 «Прикладная информатика»</u> очной формы обучения.

**Пререквизиты** (предшествующие учебные дисциплины, успешное изучение которых необходимо для полного освоения программы дисциплины): Алгебра и геометрия, Дискретная математика, Информатика и программирование, Технология программирования, Технология разработки программного обеспечения, Модели данных и прикладные алгоритмы, Высокоуровневые методы информатики и программирования.

**Кореквизиты** (*параллельные учебные дисц*иплины, успешное изучение которых способствует успешному освоению программы дисциплины): Теория систем и системный анализ, Операционные системы и оболочки, Программирование в среде Windows.

**Постреквизиты** (последующие учебные дисциплины, для успешного изучения которых требуется полное освоение программы дисциплины): Информационные технологии, Ком-

Форма А Страница 2из 22

пьютерное моделирование, Методы программирования современных информационных систем, Объектно-ориентированное программирование, Криптографические методы защиты информации, Обнаружение вторжений и защита информации, Системы принятия решений.

Результаты освоения дисциплины необходимы также для прохождения учебной, производственной, преддипломной практик и государственной итоговой аттестации.

## 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕНЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины «Вычислительная математика» направлен на формирование следующих компетенций.

| Код и наименование реали-  | Перечень планируемых результатов обучения по дисциплине,    |
|----------------------------|-------------------------------------------------------------|
| зуемой компетенции         | соотнесенных с индикаторами достижения компетенций.         |
|                            | В результате изучения дисциплины студент должен:            |
| ОПК-1 – способен приме-    | • знать:                                                    |
| нять естественнонаучные и  | ЧТО составляет содержание основных задач вычислительной     |
| общеинженерные знания,     | математики и типовых методов их решения;                    |
| методы математического     | • понимать,                                                 |
| анализа и моделирования,   | КАК методы вычислений и компьютеры применяются к про-       |
| теоретического и экспери-  | блемам реального мира и КАК с их помощью решаются основ-    |
| ментального исследования в | ные задачи вычислительной математики;                       |
| профессиональной деятель-  |                                                             |
| ности                      |                                                             |
| ОПК-2 – способен использо- | • уметь анализировать:                                      |
| вать современные информа-  | структуру погрешностей, сопровождающих решение вычисли-     |
| ционные технологии и про-  | тельных задач, свойства корректности и обусловленности за-  |
| граммные средства, в том   | дач и методов вычислительной математики, сравнительные ха-  |
| числе отечественного про-  | рактеристики прямых и итерационных методов решения ли-      |
| изводства, при решении за- | нейных систем уравнений и классические методы решения не-   |
| дач профессиональной дея-  | линейных уравнений;                                         |
| тельности                  | • понимать:                                                 |
|                            | задачи и алгоритмы метода наименьших квадратов, поста-      |
|                            | новку проблемы собственных значений матриц и вводные све-   |
|                            | дения об основах ее решения;                                |
|                            | • уметь:                                                    |
|                            | выводить и доказывать положения математической теории ме-   |
|                            | тодов вычислений, изучать предмет самостоятельно; использо- |
|                            | вать литературные источники; использовать персональный      |
|                            | компьютер для программирования; эффективно конспектиро-     |
|                            | вать материал и распоряжаться рабочим временем;             |

#### 4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

Форма обучения – очная.

Общая трудоемкость дисциплины составляет 5 ЗЕТ.

Дисциплина реализуется в 4 семестре; в конце семестра предусмотрена промежуточная аттестация в форме экзамена.

Форма А Страница 3из 22



**Текущий контроль успеваемости** реализуется посредством трех контрольных работ в классе (их содержательная тематика приведена в Фонде оценочных средств в качестве приложения к этой рабочей программе).

#### 4.1. Объем дисциплины в зачетных единицах (всего): 5 з.е.

#### 4.2. Объем дисциплины по видам учебной работы:

| 5 7 11                                                           | Количество часов (форма обучения – очная) |                     |   |                                                                                                                                    |  |  |  |
|------------------------------------------------------------------|-------------------------------------------|---------------------|---|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Вид учебной ра-<br>боты                                          | Всего по                                  | В т.ч. по семестрам |   |                                                                                                                                    |  |  |  |
|                                                                  | плану                                     | 2                   | 3 | 4                                                                                                                                  |  |  |  |
| Контактная работа обучающихся с преподавателем                   | 64                                        |                     |   | 64/64*                                                                                                                             |  |  |  |
| Аудиторные заня-<br>тия:                                         | 64                                        |                     |   | 64/64*                                                                                                                             |  |  |  |
| • Лекции                                                         | 32                                        |                     |   | 32/32*                                                                                                                             |  |  |  |
| • Практические и семинарские за-<br>нятия                        | 16                                        |                     |   | 16/16*                                                                                                                             |  |  |  |
| • Лабораторные работы (лабораторный практи-кум)                  | 16                                        |                     |   | 16/16*                                                                                                                             |  |  |  |
| Самостоятельная работа                                           | 80                                        |                     |   | 80                                                                                                                                 |  |  |  |
| Форма текущего контроля знаний и контроля самостоятельной работы |                                           |                     |   | Учет посещаемости, проверка выполнения лабораторных работ (проверка выполнения домашних заданий) и трех контрольных работ в классе |  |  |  |
| (Контроль) Экза-<br>мен                                          | 36                                        |                     |   | 36                                                                                                                                 |  |  |  |
| Всего часов по дисциплине                                        | 180                                       |                     |   | 180                                                                                                                                |  |  |  |
| Виды промежуточной аттестации (экзамен, зачет)                   | экзамен                                   |                     |   | экзамен                                                                                                                            |  |  |  |
| Общая трудоем-<br>кость в зач. ед.                               | 5                                         |                     |   | 5                                                                                                                                  |  |  |  |

<sup>\*</sup>Количество часов работы ППС с обучающимися в дистанционном формате с применением электронного обучения

В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения.

Форма А Страница 4из 22

Ф-Рабочая программа по дисциплине



#### 4.3. Содержание дисциплины

Распределение часов по темам и видам учебной работы:

| Распределение часов по темам и видам учебной работы:  Виды учебных занятий Форма теку- |           |            |                                                |                                                 |                                               |                                       |                                                                                                     |
|----------------------------------------------------------------------------------------|-----------|------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                        |           | Аул        | Аудиторные занятия                             |                                                 |                                               |                                       |                                                                                                     |
| Название разделов<br>и тем                                                             | Bcer<br>o | Лекции     | Практи-<br>ческие<br>занятия,<br>семи-<br>нары | Лабора-<br>торные<br>работы,<br>практи-<br>кумы | Занятия<br>в интер-<br>актив-<br>ной<br>форме | Самосто-<br>ятель-<br>ная ра-<br>бота | щего кон-<br>троля надле-<br>жащей успева-<br>емости<br>(ТКНУ) и до-<br>стигнутого<br>уровня знаний |
| 1                                                                                      | 2         | 3          | 4                                              | 5                                               | 6                                             | 7                                     | 8                                                                                                   |
|                                                                                        | аздел 1   | . Обзор со |                                                | и оценива                                       | ние курса                                     |                                       |                                                                                                     |
| 1.1. Обзор курса вычислительной математики.                                            | 2         | 1          | 1                                              | 0                                               |                                               | 0,5                                   | Опрос                                                                                               |
| 1.2. Система<br>ТКНУ и финаль-<br>ное оценивание.                                      | 1         | 0          | 0                                              | 0                                               |                                               | 0,5                                   | Опрос                                                                                               |
| ИТОГО                                                                                  | 3         | 1          | 1                                              | 0                                               |                                               | 1                                     | Опрос                                                                                               |
| 1                                                                                      | 2         | 3          | 4                                              | 5                                               | 6                                             | 7                                     | 8                                                                                                   |
|                                                                                        |           |            | ы Гаусса и                                     | Гаусса-Ж                                        | ордана (8/4                                   | 4/6/0/16)                             | ı                                                                                                   |
| 2.1. Алгоритмы методов Гаусса и Гаусса-Жордана.                                        | 8         | 2          | 1                                              | 1                                               |                                               | 4                                     | Лабораторная работа №1. До-машнее задание к ЛР №1.                                                  |
| 2.2. Стратегии выбора ведущего элемента.                                               | 4,5       | 1          | 0,5                                            | 1                                               |                                               | 2                                     | Лабораторная работа №1. До-<br>машнее зада-<br>ние к ЛР №1.                                         |
| 2.3. Погрешности численных методов.                                                    | 4,5       | 1          | 0,5                                            | 1                                               |                                               | 2                                     | Лабораторная работа №1. До-машнее задание к ЛР №1.                                                  |
| 2.4. Вычисление обратной матрицы.                                                      | 6         | 1          | 1                                              | 1                                               |                                               | 3                                     | Лабораторная работа №1. Домашнее задание к ЛР №1.                                                   |
| 2.5. Компактные схемы <i>LU</i> -разложения.                                           | 7         | 2          | 1                                              | 1                                               |                                               | 3                                     | Лабораторная работа №1. До-машнее задание к ЛР №1.                                                  |
| 2.6. Плохо обу-<br>словленные мат-<br>рицы.                                            | 4         | 1          | 0                                              | 1                                               |                                               | 2                                     | Лабораторная работа №1. Домашнее задание к ЛР №1.                                                   |
| ИТОГО                                                                                  | 34        | 8          | 4                                              | 6                                               | KP №1<br>= B <sub>кр-1</sub>                  | 16                                    | Лабораторная<br>работа №1 =                                                                         |

Форма А Страница 5из 22

Форма



Ф-Рабочая программа по дисциплине

|                                                    | 1         |           | 1          | 1         |                                        |                           | TT 6                                                        |
|----------------------------------------------------|-----------|-----------|------------|-----------|----------------------------------------|---------------------------|-------------------------------------------------------------|
|                                                    |           |           |            |           | баллов                                 |                           | Н1 баллов.                                                  |
| 1                                                  | 2         | 3         | 4          | 5         | 6                                      | 7                         | 8                                                           |
|                                                    | Разде.    | л 3. Мето | ды разлож  | ения Хол  | есского (4/4/                          | <b>/5</b> /0/ <b>16</b> ) |                                                             |
| 3.1.Положительно определенные матрицы.             | 5         | 1         | 0          | 1         |                                        | 3                         | Проработка теоретического материала                         |
| 3.2. Квадратные корни матриц и квадратичные формы. | 5         | 0         | 1          | 1         |                                        | 3                         | Лабораторная работа №2. До-<br>машнее зада-<br>ние к ЛР №2. |
| 3.3. Стандартные алгоритмы Холесского.             | 7         | 1         | 1          | 1         |                                        | 4                         | Лабораторная работа №2. Домашнее задание к ЛР №2.           |
| 3.4. <i>ijk</i> -алгоритмы разложения Холесского.  | 6         | 1         | 1          | 1         |                                        | 3                         | Лабораторная работа №2. До-машнее задание к ЛР №2.          |
| 3.5. Алгоритмы окаймления.                         | 6         | 1         | 1          | 1         |                                        | 3                         | Лабораторная работа №2. До-машнее задание к ЛР №2.          |
| ИТОГО                                              | 29        | 4         | 4          | 5         | КР №2<br>= В <sub>кр-2</sub><br>баллов | 16                        | Лабораторная работа №2 = Н2 баллов.                         |
| 1                                                  | 2         | 3         | 4          | 5         | 6                                      | 7                         | 8                                                           |
| Par                                                | здел 4. І | Методы о  | ртогональ  | ных прео  | бразований                             | (6/4/5/0/1                | (6)                                                         |
| 4.1. Ортогональные матрицы и их приложения.        | 6         | 1         | 0          | 1         |                                        | 4                         | Проработка теоретического материала                         |
| 4.2. Метод отражений Хаусхолдера.                  | 10        | 2         | 2          | 2         |                                        | 4                         | Лабораторная работа №3. Домашнее задание к ЛР №3.           |
| 4.3. Метод вра-<br>щений Гивенса.                  | 8         | 2         | 1          | 1         |                                        | 4                         | Лабораторная работа №3. Домашнее задание к ЛР №3.           |
| 4.4. Методы<br>Грама-Шмидта.                       | 7         | 1         | 1          | 1         |                                        | 4                         | Лабораторная работа №3. Домашнее задание к ЛР №3.           |
| ИТОГО                                              | 31        | 6         | 4          | 5         | КР №3<br>= В <sub>кр-3</sub><br>баллов | 16                        | Лабораторная работа №3 =<br>Нз баллов.                      |
| 1                                                  | 2         | 3         | 4          | 5         | 6                                      | 7                         | 8                                                           |
|                                                    | Разде     | ел 5. Мет | од наимені | ьших квад | <b>дратов</b> (6/2/0                   | 0/0/16)                   |                                                             |
| <ol><li>5.1. Задача и ме-</li></ol>                | 6,5       | 1,5       |            |           |                                        |                           |                                                             |

Форма А Страница 6из 22

| Министерство науки и высшего образования Российской Федерации<br>Ульяновский государственный университет | Форма |
|----------------------------------------------------------------------------------------------------------|-------|
| Ф-Рабочая программа по дисциплине                                                                        |       |



|                  |      |                          |      |          | •           |             |                |
|------------------|------|--------------------------|------|----------|-------------|-------------|----------------|
| квадратов        |      |                          |      |          |             |             | материала      |
| (MHK).           |      |                          |      |          |             |             |                |
| 5.2. Метод нор-  | 8    | 2                        | 1    | 0        |             | 5           | Проработка     |
| мальных уравне-  |      |                          |      |          |             |             | теоретического |
| ний.             |      |                          |      |          |             |             | материала      |
| 5.3. Методы по-  | 8,5  | 2,5                      | 1    | 0        |             | 5           | Проработка     |
| следовательного  |      |                          |      |          |             |             | теоретического |
| решения задачи   |      |                          |      |          |             |             | материала      |
| МНК.             |      |                          |      |          |             |             |                |
| ИТОГО            | 23   | 6                        | 2    | 0        |             | 15          | Проработка     |
|                  |      |                          |      |          |             |             | теоретического |
|                  |      |                          |      |          |             |             | материала      |
|                  |      | <ol><li>Заключ</li></ol> |      | рационны | е методы (7 | 7/1/0/0/16) |                |
| 6.1. Классиче-   | 6,25 | 2                        | 0.25 | 0        |             | 4           | Проработка     |
| ские методы      |      |                          |      |          |             |             | теоретического |
| Якоби и Зей-     |      |                          |      |          |             |             | материала      |
| деля.            |      |                          |      |          |             |             |                |
| 6.2. Канониче-   | 6,25 | 2                        | 0.25 | 0        |             | 4           | Проработка     |
| ская форма од-   |      |                          |      |          |             |             | теоретического |
| ношаговых ИМ.    |      |                          |      |          |             |             | материала      |
| 6.3. Методы про- | 6,25 | 2                        | 0.25 | 0        |             | 4           | Проработка     |
| стой итерации,   |      |                          |      |          |             |             | теоретического |
| Ричардсона,      |      |                          |      |          |             |             | материала      |
| Юнга.            |      |                          |      |          |             |             |                |
| 6.4. Метод Нью-  | 5,25 | 1                        | 0.25 | 0        |             | 4           | Проработка     |
| тона решения     |      |                          |      |          |             |             | теоретического |
| нелинейных       |      |                          |      |          |             |             | материала.     |
| уравнений.       |      |                          |      |          |             |             |                |
| ИТОГО            | 24   | 7                        | 1    | 0        |             | 16          | Проработка     |
|                  |      |                          |      |          |             |             | теоретического |
|                  |      |                          |      |          |             |             | материала      |
| Экзамен          | 36   | 0                        | 0    | 0        | 0           | 0           | ТКНУ= Посе-    |
|                  |      |                          |      |          |             |             | щаемость + (КР |
|                  |      |                          |      |          |             |             | №1-2-3) + (ЛР  |
|                  |      |                          |      |          |             |             | №1-2-3). Ответ |
|                  |      |                          |      |          |             |             | на экзаменаци- |
|                  |      |                          |      |          |             |             | онный билет во |
|                  |      |                          |      |          |             |             | время сессии.  |

**Правило выставления оценки за курс**: Итоговый балл **FG** = **0,05\*A+0, 30\*H/3+0,**  $\overline{\textbf{65*E/4}}$ . *Посещаемость* **A** = 100 - P, где P =штраф за N неуважительных пропусков: P = 0 при N = 0; P = 10 при N = 1; P = 50 + 50\*(N - 2) при 2 <= N <= 7; P = 300 + 200\*(N - 7), при 7 <= N. P = 0 при H1 >= 86.

Выполнение заданий по ЛР №1-2-3: **H** = H1 + H2 + H3, где Hi – процент выполнения i-й ЛР. Экзамен: **E** = (Вкр–1) + (Вкр–2) + (Вкр–3) + (Вуоэ), где (Вкр–i) – процент выполнения i-й КР, (Вуоэ) – уровень ответа на вопросы экзамена во время сессии (Вуоэ).

Отображение  $\mathbf{FG}$  на стандартную шкалу экзаменационных оценок:  $\mathbf{FG} = \{86:100\} => \text{ «отлично»}; \mathbf{FG} = \{71:85\} => \text{ «хорошо»}; \mathbf{FG} = \{56:70\} => \text{ «удовлетворительно»}; \mathbf{FG} = \{0:55\} => \text{ «неудовлетворительно»}. (Шаг по 15 баллов на каждую из трех положительных оценок).$ 

(Это правило показывает общий принцип, доказавший свою работоспособность за многие годы применения. Его отдельные параметры могут быть незначительно скорректированы в каждом текущем году.)

Форма А Страница 7из 22



Ф-Рабочая программа по дисциплине

| Ито                       | говое ра    | пспределе | ние часов                                      | по темам и                                      | видам уч                                               | ебной рабо                                     | ТЫ                                                                                                                                                                                                     |
|---------------------------|-------------|-----------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |             |           | Форма теку-                                    |                                                 |                                                        |                                                |                                                                                                                                                                                                        |
|                           |             | Аудито    | рные занят                                     | гия (час)                                       | n                                                      |                                                | щего кон-                                                                                                                                                                                              |
| * ' '                     | Всего (час) | Лекции    | Практи-<br>ческие<br>занятия,<br>семи-<br>нары | Лабора-<br>торные<br>работы,<br>практи-<br>кумы | Занятия<br>в интер-<br>актив-<br>ной<br>форме<br>(час) | Самосто-<br>ятель-<br>ная ра-<br>бота<br>(час) | троля надле-<br>жащей успева-<br>емости<br>(ТКНУ) и до-<br>стигнутого<br>уровня знаний                                                                                                                 |
| 1                         | 2           | 3         | 4                                              | 5                                               | 6                                                      | 7                                              | 8                                                                                                                                                                                                      |
| Всего разделов 6 и тем 24 | 180         | 32        | 16                                             | 16                                              | 0                                                      | 80                                             | Посещаемость; Назначение штрафа за неуважительные пропуски; Процент выполненного объема заданий по ЛР №1-2-3; Баллы за три контрольные работы; Балл за ответ на экзаменационный билет во время сессии. |

#### 5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

#### Раздел 1. Обзор содержания и оценивание курса (1/1/0/0/1)

**Тема** 1.1. *Обзор курса «Вычислительная математика»*: Выдача студентам руководящего документа (1 стр. текста) «Обзор курса» – для повседневного использования. (1/0/0)

**Тема** 1.2. Система текущего контроля надлежащей успеваемости (ТКНУ) и финальное оценивание: Информирование обучающихся о применяемой в этом курсе системе ТКНУ и о правиле учета результатов ТКНУ для финального оценивания достигнутого уровня знаний (ДУЗ) студента в период экзаменационной сессии. (0/1/0)

#### Раздел 2. Методы Гаусса и Гаусса-Жордана (8/4/6/0/16)

- **Тема** 2.1. Алгоритмы методов Гаусса и Гаусса-Жордана: Теоремы о единственности LU-разложения и теоремы об алгоритме этих разложений в одном массиве. Решение систем после разложения: прямой и обратный ход процедуры. (2/1/1)
- **Тема** 2.2. *Стратегии выбора ведущего элемента*: Три основные стратегии: по столбцу, по строке и активной подматрице. Практическая реализация этих стратегий без фактических перестановок в памяти компьютера. (1/0,5/1)
- **Тема** 2.3. *Погрешности численных методов*: Классификация погрешностей: методические, трансформированные и инструментальные. Распространение погрешностей. Прямой и обратный анализ погрешностей. (1/0,5/1)
- **Тема** 2.4. *Вычисление обратной матрицы*: Вычисление обратной матрицы через решение системы (первый способ). Вычисление обратной матрицы через LU-разложение (второй способ элиминативная форма обратной матрицы). (1/1/1)

Форма А Страница 8из 22

| Министерство науки и высшего образования Российской Федерации<br>Ульяновский государственный университет | Форма |  |
|----------------------------------------------------------------------------------------------------------|-------|--|
| Ф-Рабочая программа по дисциплине                                                                        |       |  |

**Тема** 2.5. *Компактные схемы LU-разл*ожения: Доказательство алгоритма Краута (компактная схема «строка-стролбец»). Строчно ориентированная схема. (2/1/1)

**Тема** 2.6. *Плохо обусловленные матрицы*: Обусловленность матриц и обусловленность задач. Стандартное число обусловленности матрицы. Примеры задач с плохой обусловленностью матриц. (1/0/1)

Этот раздел предусматривает выполнение студентом Контрольной работы №1 (в классе) и Лабораторного проекта (работы) №1. Все задания – индивидуальные.

#### Раздел 3. Методы разложения Холесского (4/4/5/0/16)

- **Тема** 3.1. *Положительно определенные матрицы*: Свойства положительно определенных матриц. Необходимые и достаточные условия положительной определенности матриц. (1/0/1)
- **Тема** 3.2. *Квадратные корни матриц и квадратичные формы*: Неединственность квадратного корня матрицы. Определение квадратической формы матрицы. (0/1/1)
- **Тема** 3.3. *Стандартные алгоритмы Холесского*: Разновидности разложений Холесского: с операцией квадратного корня и без этой операции. Вывод алгоритмов Холесского (доказательство по методу квадратических форм). (1/1/1)
- **Тема** 3.4. *ijk-алгоритмы разложения Холесского*: Разновидности векторно ориентированных алгоритмов. Алгоритмы с немедленными и с отложенными модификациями, строчно- и столбцово-ориентированные алгоритмы. (1/1/1)
- **Тема** 3.5. *Алгоритмы окаймления*: Алгоритмы окаймления известной или неизвестной части LU-разложения. (1/1/1)

Этот раздел предусматривает выполнение студентом Контрольной работы №2 (в классе) и Лабораторного проекта (работы) №2. Все задания – индивидуальные.

#### Раздел 4. Методы ортогональных преобразований (6/4/5/0/16)

- **Тема** 4.1. *Ортогональные матрицы и их при*ложения: Определение ортогональных векторов и ортогональных матриц. Примеры ортогональных матриц и преимущества их использования в численных методах. (1/0/1)
- **Тема** 4.2. *Метод отражений Ха*усхолдера: Прямая и обратная задачи отражений в евклидовом пространстве. Задача триангуляризации матриц, численное решение систем уравнений и обращение матриц на основе метода Хаусхолдера. (2/2/2)
- **Тема** 4.3. *Метод вращений Гивенса*: Определение матриц вращения в евклидовом пространстве. Задача триангуляризации матриц, численное решение систем уравнений и обращение матриц на основе метода Гивенса. (2/1/1)
- **Тема** 4.4. *Методы Грама-Ш*мидта: Метод ортогонализации системы векторов. Процедура Грама-Шмидта: обыкновенный и модифицированный алгоритмы. (1/1/1)

Этот раздел предусматривает выполнение студентом Контрольной работы №3 (в классе) и Лабораторного проекта (работы) №3. Все задания – индивидуальные.

#### Раздел 5. Метод наименьших квадратов (6/2/0/0/16)

- **Тема** 5.1. *Задача и метод наименьших квадратов (МНК)*: Постановка задачи моделирования по методу наименьших квадратов. Формальное решение задачи в классе линейных систем. Нормальное псевдорешение. (1,5/0/0)
- **Тема** 5.2. *Метод нормальных урав*нений: Вывод нормальных уравнений на основе математического анализа и на основе геометрии. Алгоритмы одновременного решения нормальных уравнений. (2/1/0)
- **Тема** 5.3. *Методы последовательного решения задачи МНК*: Статистическая интерпретация метода наименьших квадратов. Включение априорной статистической информа-

Форма А Страница 9из 22

| Министерство науки и высшего образования Российской Федерации<br>Ульяновский государственный университет | Форма |  |
|----------------------------------------------------------------------------------------------------------|-------|--|
| Ф-Рабочая программа по дисциплине                                                                        |       |  |

ции в процесс решения задач метода НК. Включение предыдущего МНК-решения в реализацию метода НК. (2,5/1/0)

Этот раздел предусматривает выполнение студентом самостоятельной проработки теоретического материала, преподанного в лекциях и практических (семинарских) занятиях.

Раздел 6. Заключение – итерационные методы (7/1/0/0/16)

**Тема** 6.1. *Классические методы Якоби и Зейделя*: Итерационная формула задачи отыскания корней уравнений. Формулирование методов Якоби и Зейделя. Скалярная и векторная формы записи этих методов. (2/0,25/0)

**Тема** 6.2. *Каноническая форма одношаговых ИМ*: Классификация итерационных методов и представление их в единой форме стандартных одношаговых явных или неявных методов. (2/0,25/0)

**Тема** 6.3. *Методы простой итерации, Ричардсона, Юнга*: Формулировки метода простой итерации, метода Ричардсона и метода Юнга (верхней релаксации). (2/0,25/0)

**Тема** 6.4. *Метод Ньютона решения нелинейных уравнений*: Классический метод Ньютона безусловной минимизации функций и связанный с ним метод решения нелинейных уравнений. (1/0,25/0)

Этот раздел предусматривает выполнение студентом самостоятельной проработки теоретического материала, преподанного в лекциях и практических (семинарских) занятиях.

#### 6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Практические занятия (семинары) занимают 8 учебных занятий (по 2 академических часа каждое). Они предусматривают решение задач по тематике Разделов 1-6 и обсуждение найденных решений. Сертификат о надлежащей успеваемости (СНУ) студент зарабатывает удовлетворительным посещением семинарских занятий и выполнением учебной работы в классе в те сроки, которые указаны в тематическом перечне семинарских занятий. В получении СНУ студенту может быть отказано, если им не удовлетворены следующие условия: (i) все части семинарских заданий студент выполнял на уровне принятых стандартов и представил для оценивания к заданному сроку; (ii) студент проявил удовлетворительную посещаемость аудиторных занятий и удовлетворительное участие во всех разделах курса в следующем перечне тем.

- 1. Тема 1.2. Система текущего контроля надлежащей успеваемости (ТКНУ) и финальное оценивание. (1 час)
  - Тема 2.1. Алгоритмы методов Гаусса и Гаусса-Жордана. (1 час)
- 2. **Тема** 2.2. *Стратегии выбора ведущего элемента*: Три основные стратегии: по столбцу, по строке и активной подматрице. Практическая реализация этих стратегий без фактических перестановок в памяти компьютера. (0,5 часа)
  - **Тема** 2.3. *Погрешности численных методов*: Классификация погрешностей: методические, трансформированные и инструментальные. Распространение погрешностей. Прямой и обратный анализ погрешностей. (0,5 часа)
  - **Тема** 2.4. *Вычисление обратной матрицы*: Вычисление обратной матрицы через решение системы (первый способ). Вычисление обратной матрицы через LU-разложение (второй способ элиминативная форма обратной матрицы). (1 час)
- 3. **Тема** 2.5. *Компактные схемы LU-разл*ожения: Доказательство алгоритма Краута (компактная схема «строка-стролбец»). Строчно ориентированная схема. (1 час) **Тема** 3.2. *Квадратные корни матриц и квадратичные формы*: Неединственность квадратного корня матрицы. Определение квадратической формы матрицы. (1 час)
- 4. **Тема** 3.3. *Стандартные алгоритмы Холесского*: Разновидности разложений Холесского: с операцией квадратного корня и без этой операции. Вывод алгоритмов Холесского (доказательство по методу квадратических форм). (1 час)

Форма А Страница 10из 22



- **Тема** 3.4. *ijk-алгоритмы разложения Холесского*: Разновидности векторно ориентированных алгоритмов. Алгоритмы с немедленными и с отложенными модификациями, строчно- и столбцово-ориентированные алгоритмы. (1 час)
- 5. **Тема** 3.5. *Алгоритмы окаймления*: Алгоритмы окаймления известной или неизвестной части *LU*-разложения. (1 час)
  - **Тема** 4.2. *Метод отражений Хаусхолдера I*: Прямая и обратная задачи отражений в евклидовом пространстве. Задача триангуляризации матриц, численное решение систем уравнений и обращение матриц на основе метода Хаусхолдера. (1 час)
- 6. **Тема** 4.2. *Метод отражений Хаусхолдера II*: Прямая и обратная задачи отражений в евклидовом пространстве. Задача триангуляризации матриц, численное решение систем уравнений и обращение матриц на основе метода Хаусхолдера. (1 час) **Тема** 4.3. *Метод вращений Гивенса*: Определение матриц вращения в евклидовом
  - **Тема** 4.3. *Метод вращений Гивенса*: Определение матриц вращения в евклидовом пространстве. Задача триангуляризации матриц, численное решение систем уравнений и обращения матриц на основе метода Гивенса. (1 час)
- 7. **Тема** 4.4. *Методы Грама-Ш*мидта: Метод ортогонализации системы векторов. Процедура Грама-Шмидта: обыкновенный и модифицированный алгоритмы. (1 час) **Тема** 5.2. *Метод нормальных урав*нений: Вывод нормальных уравнений на основе математического анализа и на основе геометрии. Алгоритмы одновременного решения нормальных уравнений. (1 час)
- 8. **Тема** 5.3. *Методы последовательного решения задачи МНК*: Статистическая интерпретация метода наименьших квадратов. Включение априорной статистической информации в процесс решения задач метода НК. Включение предыдущего МНК-решения в реализацию метода НК. (1 час)
  - **Тема** 6.1. *Классические методы Якоби и Зейделя*: Итерационная формула задачи отыскания корней уравнений. Формулирование методов Якоби и Зейделя. Скалярная и векторная формы записи этих методов. (0,25 часа)
  - **Тема** 6.2. *Каноническая форма одношаговых ИМ*: Классификация итерационных методов и представление их в единой форме стандартных одношаговых явных или неявных методов. (0,25 часа)
  - **Тема** 6.3. *Методы простой итерации, Ричардсона, Юнга*: Формулировки метода простой итерации, метода Ричардсона и метода Юнга (верхней релаксации). (0,25 часа)
  - **Тема** 6.4. *Метод Ньютона решения нелинейных уравнений*: Классический метод Ньютона безусловной минимизации функций и связанный с ним метод решения нелинейных уравнений. (0,25 часа)

#### 7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

| <b>Темы лабораторных работ</b> (три проекта)                                                 |
|----------------------------------------------------------------------------------------------|
| Лабораторная работа (проект) №1. <i>Стандартные алгоритмы LU-разложения</i> (раздел 2 курса) |
| Лабораторная работа (проект) №2. <i>Разложения Холесского</i> (раздел 3 курса)               |
| Лабораторная работа (проект) №3. <i>Ортогональные преобразования</i> (раздел 4 курса)        |

Лабораторные работы снабжены детальными методическими указаниями.

Форма А Страница 11из 22



Особенность: Проект, ввиду его объемности, студент разрабатывает и сдает преподавателю по частям в дисплейном классе по расписанию занятий. Это – одна из интерактивных форм занятий. На первом занятии студент определяет индивидуальное задание на лабораторный проект из предлагаемых **Вариантов** (см. ниже), согласует задание у преподавателя, составляет план-график работы и создает структуру проекта для его выполнения «сверху-вниз». Элементы этой структуры он детализирует (программирует) в режиме индивидуальной (домашней) работы, чтобы на последующих занятиях поэтапно защищать свои результаты. Когда он считает, что готов сдать проект окончательно, он его защищает, подвергая его не только критике преподавателя, но и возможной дискуссии разработчиков аналогичных проектов.

Эта проектно-ориентированная методика соединяет шесть преимуществ и обеспечивает их практическую, эффективную реализацию:

- 1. Целенаправленность. Задание на проект (работу) настраивает студента на достижение одной цели, которую он сам способен понять и сформулировать.
- 2. *Подлинность*. Задание соответствует реальности, то есть формулирует задачи, соответствующие задачам действительности.
- 3. Вызов. Задание предусматривает возрастающие уровни сложности, бросающие студенту вызов с тем, чтобы актуализировать (приводить в действие) все возможности личности, ее творческий потенциал и состязательный инстинкт.
- 4. *Разнообразие*. Набор заданий создает возможность свободного выбора несовпадающих тем и предусматривать различные сценарии выполнения для поддержания интереса.
- 5. Поощрение. Оценивание достигнутого студентом уровня, который количественно измерим, изначально понятно студенту. Оно работает все более эффективно по мере улучшения приобретаемых студентом навыков в контексте нарастающей успешности выполнения задания (распределенное градуированное поощрение).
- 6. Навигация. Студент имеет возможность самостоятельно осуществлять навигацию по любым сценариям выполнения проекта (контролируемая студентом навигация) для получения желаемой оценки и в конечном итоге для достижения своих индивидуальных образовательных целей.

Главная отличительная особенность этого курса и его лабораторного практикума выражается в следующем диалоге, который иногда возникает между Студентом и Экзаменатором:

- Студент: Я хорошо знаю этот численный метод и хочу получить более высокую оценку.
- Экзаменатор: Если вы хорошо знаете этот метод, то покажите, что вам не составляет труда научить этому методу компьютер.

#### Варианты задания на лабораторный проект №1:

- 1.  $L\bar{U}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по столбцу.
- 2.  $L\bar{U}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по строке.
- 3.  $L\bar{U}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по активной подматрице.

Форма А Страница 12из 22



- 4. LU-разложение на основе гауссова исключения по столбцам с выбором главного элемента по столбцу.
- 5.  $\bar{L}U$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по строке.
- 6.  $\bar{L}U$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по активной подматрице.
- 7.  $L\bar{U}$ -разложение на основе гауссова исключения по строкам с выбором главного элемента по строке.
- 8.  $L\bar{U}$ -разложение по компактной схеме Краута с выбором главного элемента по столбцу.
- 9. LU-разложение по компактной схеме Краута с выбором главного элемента по строке.
- 10.  $L\bar{U}$ -разложение по компактной схеме «строка за строкой» с выбором главного элемента по строке.
- 11.  $L\bar{U}^{-1}$ -разложение  $A=L\bar{U}$  на основе жорданова исключения с выбором главного элемента по столбцу.
- 12.  $L\bar{U}^{-1}$ -разложение  $A=L\bar{U}$  на основе жорданова исключения с выбором главного элемента по строке.
- 13.  $L\bar{U}^{-1}$ -разложение  $A=L\bar{U}$  на основе жорданова исключения с выбором главного элемента по активной подматрице.
- 14. UL-разложение на основе гауссова исключения по столбцам с выбором главного элемента по столбцу.
- 15.  $\bar{U}L$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по строке.
- 16. UL-разложение на основе гауссова исключения по столбцам с выбором главного элемента по активной подматрице.
- 17.  $U\bar{L}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по столбцу.
- 18.  $U\bar{L}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по строке.
- 19.  $U\bar{L}$ -разложение на основе гауссова исключения по столбцам с выбором главного элемента по активной подматрице.
- 20. UL-разложение на основе гауссова исключения по строкам с выбором главного элемента па строке.

Форма А Страница 13из 22





- 21.  $U\bar{L}$ -разложение по компактной схеме Краута с выбором главного элемента по столбцу.
- 22. UL-разложение по компактной схеме Краута с выбором главного элемента по строке.
- 23.  $U\bar{L}$ -разложение по компактной схеме «строка за строкой» с выбором главного элемента по строке.
- 24.  $\bar{L}^{-1}U$ -разложение  $A=\bar{L}U$  на основе жорданова исключения с выбором главного элемента по столбцу.
- 25.  $\bar{L}^{-1}U$ -разложение  $A=\bar{L}U$  на основе жорданова исключения с выбором главного элемента по строке.
- 26.  $\bar{L}^{-1}U$ -разложение  $A=\bar{L}U$  на основе жорданова исключения с выбором главного элемента по активной подматрице.

#### Варианты задания на лабораторный проект №2:

| Вид                     | <i>ijk</i> -формы |     |     |     | Окаймление |     |    |                |    |                 |
|-------------------------|-------------------|-----|-----|-----|------------|-----|----|----------------|----|-----------------|
| разложения              | kij               | kji | jki | jik | ikj        | ijk |    | естной<br>асти |    | вестной<br>асти |
|                         |                   |     |     |     |            |     | a  | b              | c  | b               |
| $P = \bar{L}D\bar{L}^T$ | 1                 | 2   | 3   | 4   | 5          | 6   | 7  | 8              | 9  | 10              |
| $P = LL^T$              | 11                | 12  | 13  | 14  | 15         | 16  | 17 | 18             | 19 | 20              |
| $P = \bar{U}D\bar{U}^T$ | 21                | 22  | 23  | 24  | 25         | 26  | 27 | 28             | 29 | 30              |
| $P = UU^T$              | 31                | 32  | 33  | 34  | 35         | 36  | 37 | 36             | 39 | 40              |

<sup>&</sup>lt;sup>а</sup> — строчный алгоритм;

#### Варианты задания на лабораторный проект №3:

Форма А Страница 14из 22

<sup>&</sup>lt;sup>b</sup> — алгоритм скалярных произведений;

<sup>&</sup>lt;sup>с</sup> — алгоритм линейных комбинаций.



| Вариант<br>заполнения<br>матрицы <i>R</i> | Отражения<br>Хаусхолдера |    | Вращения<br>Гивенса |    | Ортогонализация<br>Грама–Шмидта |    |    |
|-------------------------------------------|--------------------------|----|---------------------|----|---------------------------------|----|----|
| матрицы т                                 | a                        | b  | a                   | b  | С                               | d  | е  |
|                                           | 1                        | 2  | 3                   | 4  | 5                               | 6  | 7  |
|                                           | 8                        | 9  | 10                  | 11 | 12                              | 13 | 14 |
|                                           | 15                       | 16 | 17                  | 18 | 19                              | 20 | 21 |
|                                           | 22                       | 23 | 24                  | 25 | 26                              | 27 | 28 |

<sup>&</sup>lt;sup>а</sup> — столбцово-ориентированный алгоритм;

Если нет других указаний преподавателя, студент находит свой вариант по своему номеру в журнале студенческой группы.

#### 8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

- **8.1** Курсовые работы (или рефераты) работы не предусмотрены учебным планом данной дисциплины.
- **8.2 Тематика контрольных работ:** Перечень из 48 вариантов заданий на три контрольные работы (по три задачи в каждом варианте) приведен в Фонде оценочных средств.

*Контрольная работа №1:* Стандартные алгоритмы LU-разложения: решение систем, отыскание определителя и вычисление обратной матрицы.

*Контрольная работа №2:* Разложения Холесского положительно определенных матриц: решение систем и отыскание квадратической формы матрицы.

**Контрольная работа**  $N_2$ 3: Ортогональные преобразования: QR-разложение матрицы (преобразованиями Хаусхолдера или Гивенса), решение систем и вычисление обратной матрицы.

#### 8.2.1 Правила выполнения контрольных работ:

Контрольные работы выполняются в классе. Переписывание (повторное выполнение) контрольных работ запрещено.

#### 9. ПЕРЕЧЕНЬ ВОПРОСОВ ЭКЗАМЕНА

- 1. Теорема о существовании и единственности  $\overline{L}\,U$  (вариант:  $L\overline{U}$  )-разложения. Связь разложения и метода Гаусса исключения неизвестных.
- 2. Теорема о существовании и единственности  $U\overline{L}$  (вариант:  $\overline{U}L$ )-разложения. Связь разложения и метода Гаусса исключения неизвестных.
- 3. Метод Гаусса: расчетные формулы и подсчет числа действий умножения/деления в процедуре факторизации матрицы.

Форма А Страница 15из 22

b — строчно-ориентированный алгоритм;

<sup>&</sup>lt;sup>с</sup> — классическая схема;

<sup>&</sup>lt;sup>d</sup> — модифицированая схема;

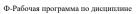
е — модифицированая схема с выбором ведущего вектора.





- 4. Метод Гаусса: расчетные формулы и подсчет числа действий умножения/деления в процедурах прямой и обратной подстановки.
- 5. Элементарные треугольные матрицы. Алгоритм  $\bar{L}U$  (вариант:  $L\bar{U}$  )-разложения с замещением исходной матрицы матрицами U ( $\bar{U}$ ) и L( $\bar{L}$ ).
- 6. Элементарные треугольные матрицы. Алгоритм  $U\overline{L}$  (вариант:  $\overline{U}L$ )-разложения с замещением исходной матрицы матрицами  $U(\overline{U})$  и  $L(\overline{L})$ .
- 7. Метод Гаусса с выбором главного элемента: стратегии и программная реализация. Выбор ГЭ по строке и решение систем.
- 8. Метод Гаусса об  $\overline{L}U$  (вариант:  $L\overline{U}$  )-разложении с выбором главного элемента по столбцу активной подматрицы.
- 9. Метод Гаусса об  $\overline{L}U$  (вариант:  $L\overline{U}$  )-разложении с выбором главного элемента по строке активной подматрицы.
- 10. Вычисление определителя и обращение матрицы с учетом выбора главного элемента.
- 11. Метод Гаусса-Жордана: теорема об алгоритме об  $L\overline{U}$  -разложении -разложения с получением  $\overline{U}^{-1}$  .
- 12. Метод Гаусса-Жордана: теорема об алгоритме  $U\overline{L}$  -разложения с получением  $\overline{L}^{-1}$  .
- 13. Компактные схемы  $\overline{L}U$  (вариант:  $L\overline{U}$  )-разложения.
- 14. Компактные схемы: вариант  $U\overline{L}$  (вариант:  $\overline{U}L$ )-разложения.
- 15. Алгоритмы  $\overline{L}U$  (вариант:  $L\overline{U}$  )-разложения с исключением по столбцам и по строкам.
- 16. Алгоритмы  $U\overline{L}$  (вариант:  $\overline{U}L$  )-разложения с исключением по столбцам и по строкам.
- 17.  $\overline{L}D\overline{L}^T$  -разложение положительно-определенных матриц: теоретическое обоснование алгоритма: вывод по методу квадратичных форм.
- $18.\ LL^{T}$ -разложение положительно-определенных матриц: теоретическое обоснование алгоритма: вывод по методу квадратичных форм.
- 19. Положительно-определенные матрицы, квадратные корни матриц и разложения Холесского.
- $20.\ LL^T$  -разложение положительно-определенных матриц: теоретическое обоснование алгоритма.
- $21.\ LL^T$  -разложение положительно-определенных матриц: вывод алгоритма по методу квадратичных форм.
- 22.  $\overline{L}D\overline{L}^T$  -разложение положительно-определенных матриц: теоретическое обоснование алгоритма.
- 23.  $\overline{L}D\overline{L}^T$  -разложение положительно-определенных матриц: вывод алгоритма по методу квадратичных форм.
- 24.  $UU^T$  -разложение положительно-определенных матриц: теоретическое обоснование алгоритма.
- 25.  $UU^T$  -разложение положительно-определенных матриц: вывод алгоритма по методу квадратичных форм.
- 26.  $\overline{U}D\overline{U}^T$  -разложение положительно-определенных матриц: теоретическое обоснование алгоритма.

Форма А Страница 16из 22


- 27.  $\overline{U}D\overline{U}^T$  -разложение положительно-определенных матриц: вывод алгоритма по методу квадратичных форм.
- 28. Элементарные отражения Хаусхолдера: прямая и обратная задачи.
- 29. Ортогональные преобразования Хаусхолдера для верхней триангуляризации матрицы в задаче решения СЛАУ.
- 30. Ортогональные преобразования Гивенса для верхней триангуляризации матрицы в задаче решения СЛАУ.
- 31. Решение СЛАУ и обращение матрицы системы после верхней триангуляризации матрицы ортогональными преобразованиями Хаусхолдера.
- 32. Решение СЛАУ и обращение матрицы системы после верхней триангуляризации матрицы ортогональными преобразованиями Гивенса.
- 33. Процедура ортогонализации Грама-Шмидта: обыкновенный алгоритм.
- 34. Процедура ортогонализации Грама-Шмидта: модифицированный алгоритм.
- 35. Обыкновенный алгоритм ортогонализации Грама-Шмидта для верхней триангуляризации матрицы в задаче решения СЛАУ.
- 36. Модифицированный алгоритм ортогонализации Грама-Шмидта для верхней триангуляризации матрицы в задаче решения СЛАУ.
- 37. Решение СЛАУ и обращение матрицы системы после верхней триангуляризации матрицы обыкновенным алгоритмом Грама-Шмидта.
- 38. Решение СЛАУ и обращение матрицы системы после верхней триангуляризации матрицы модифицированным алгоритмом Грама-Шмидта.
- 39. Классификация итерационных методов решения СЛАУ.
- 40. Каноническая форма итерационных методов решения СЛАУ.
- 41. Разновидности итерационных методов решения СЛАУ как частные случаи канонической формы ИМ.
- 42. Итерационный метод Якоби решения СЛАУ.
- 43. Итерационный метод Зейделя решения СЛАУ.
- 44. Итерационный метод простой итерации решения СЛАУ.
- 45. Итерационный метод Ричардсона решения СЛАУ.
- 46. Итерационный метод Юнга решения СЛАУ.
- 47. Итерационный метод Ньютона решения систем нелинейных уравнений.
- 48. Классический метод Ньютона безусловной минимизации функций.

#### 10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Самостоятельная работа студентов осуществляется в форме домашнего выполнения заданий по трем основным темам, по которым студенты выполняют лабораторные работы (проекты) 1, 2 и 3 (см. разд. 7) и вышеуказанные контрольные работы 1, 2 и 3 (см. разд. 8), а также прорабатывают теоретический материал при подготовке к текущим занятиям и финальному экзамену.

| Название разделов и тем | Вид самостоятельной    | Объем в | Форма контроля    |
|-------------------------|------------------------|---------|-------------------|
|                         | работы                 | часах   |                   |
| 1.1. Обзор курса вычис- | Проработка лекцион-    | 0,5     | Опрос             |
| лительной математики.   | ного материала (лекция |         |                   |
|                         | No1)                   |         |                   |
| 1.2. Система ТКНУ и фи- | Ознакомление с руково- | 0,5     | Опрос             |
| нальное оценивание.     | дящим документом       |         |                   |
|                         | «Обзор курса» (1 стр.  |         |                   |
|                         | текста)                |         |                   |
| 2.1. Алгоритмы методов  | Лабораторная работа    | 4       | Экзамен, проверка |

Форма А Страница 17из 22





| E E M                             | N. 1 H                |   |                     |
|-----------------------------------|-----------------------|---|---------------------|
| Гаусса и Гаусса-Жор-              | №1. Домашнее задание  |   | лабораторных ра-    |
| дана.                             | к ЛР №1.              |   | бот, проверка задач |
| 2.2. Стратегии выбора ве-         | Лабораторная работа   | 2 | Экзамен, проверка   |
| дущего элемента.                  | №1. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №1.              |   | бот, проверка задач |
| 2.3. Погрешности числен-          | Лабораторная работа   | 2 | Экзамен, проверка   |
| ных методов.                      | №1. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №1.              |   | бот, проверка задач |
| 2.4. Вычисление обрат-            | Лабораторная работа   | 3 | Экзамен, проверка   |
| ной матрицы.                      | №1. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №1.              |   | бот, проверка задач |
| 2.5. Компактные схемы             | Лабораторная работа   | 3 | Экзамен, проверка   |
| LU-разложения.                    | №1. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №1.              |   | бот, проверка задач |
| 2.6. Плохо обусловлен-            | Лабораторная работа   | 2 | Экзамен, проверка   |
| ные матрицы.                      | №1. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №1.              |   | бот, проверка задач |
| 3.1.Положительно опре-            | Проработка теоретиче- | 3 | Экзамен, проверка   |
| деленные матрицы.                 | ского материала       | 3 | лабораторных ра-    |
| деленные матрицы.                 | Ского материала       |   | бот, проверка задач |
| 2.2 Vnounomu to kontu             | Лабораторная работа   | 3 |                     |
| 3.2. Квадратные корни             | 1 1 1                 | 3 | Экзамен, проверка   |
| матриц и квадратичные             | №2. Домашнее задание  |   | лабораторных ра-    |
| формы.                            | к ЛР №2.              | 4 | бот, проверка задач |
| 3.3. Стандартные алго-            | Лабораторная работа   | 4 | Экзамен, проверка   |
| ритмы Холесского.                 | №2. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №2.              |   | бот, проверка задач |
| 3.4. <i>ijk</i> -алгоритмы разло- | Лабораторная работа   | 3 | Экзамен, проверка   |
| жения Холесского.                 | №2. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №2.              |   | бот, проверка задач |
| 3.5. Алгоритмы окаймле-           | Лабораторная работа   | 3 | Экзамен, проверка   |
| ния.                              | №2. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №2.              |   | бот, проверка задач |
| 4.1. Ортогональные мат-           | Проработка теоретиче- | 4 | Экзамен, проверка   |
| рицы и их приложения.             | ского материала       |   | лабораторных ра-    |
|                                   |                       |   | бот, проверка задач |
| 4.2. Метод отражений              | Лабораторная работа   | 4 | Экзамен, проверка   |
| Хаусхолдера.                      | №3. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №3.              |   | бот, проверка задач |
| 4.3. Метод вращений Ги-           | Лабораторная работа   | 4 | Экзамен, проверка   |
| венса.                            | №3. Домашнее задание  |   | лабораторных ра-    |
|                                   | к ЛР №3.              |   | бот, проверка задач |
| 4.4. Методы Грама-                | Лабораторная работа   | 4 | Экзамен, проверка   |
| Шмидта.                           | №3. Домашнее задание  | • | лабораторных ра-    |
|                                   | к ЛР №3.              |   | бот, проверка задач |
|                                   |                       |   | Н                   |
| 5.1. Задача и метод               | Проработка теоретиче- | 5 | Экзамен             |
| наименьших квадратов              | ского материала       | J | Экзамісп            |
| (МНК).                            | ского материала       |   |                     |
| 5.2. Метод нормальных             | Проработка теоретиче- | 5 | Экзамен             |
| _                                 | * *                   | J | JASAMUH             |
| уравнений.                        | ского материала       |   |                     |

Форма А Страница 18из 22

| Министерство науки и высшего образования Российской Федерации<br>Ульяновский государственный университет | Форма |  |
|----------------------------------------------------------------------------------------------------------|-------|--|
| Ф-Рабочая программа по дисциплине                                                                        |       |  |

| 5.3. Методы последова-   | Проработка теоретиче- | 5 | Экзамен |
|--------------------------|-----------------------|---|---------|
| тельного решения задачи  | ского материала       |   |         |
| МНК.                     |                       |   |         |
| 6.1. Классические методы | Проработка теоретиче- | 4 | Экзамен |
| Якоби и Зейделя.         | ского материала       |   |         |
| 6.2. Каноническая форма  | Проработка теоретиче- | 4 | Экзамен |
| одношаговых ИМ.          | ского материала       |   |         |
| 6.3. Методы простой ите- | Проработка теоретиче- | 4 | Экзамен |
| рации, Ричардсона,       | ского материала       |   |         |
| Юнга.                    | -                     |   |         |
| 6.4. Метод Ньютона ре-   | Проработка теоретиче- | 4 | Экзамен |
| шения нелинейных урав-   | ского материала       |   |         |
| нений.                   | _                     |   |         |

### 11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

#### а) Список рекомендуемой литературы

#### основная:

- 1. Семушин, Иннокентий Васильевич. Детерминистские модели динамических систем : учеб. пособие / Семушин Иннокентий Васильевич, Ю. В. Цыганова ; УлГУ. Ульяновск : УлГУ, 2006.
- 2. Круглов, В. М. Случайные процессы в 2 ч. Часть 2. Основы стохастического анализа : учебник для академического бакалавриата / В. М. Круглов. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 280 с. (Авторский учебник). ISBN 978-5-534-02086-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: <a href="https://urait.ru/bcode/434664">https://urait.ru/bcode/434664</a>

#### дополнительная:

- 1. Семушин И. В.Стохастические модели и оценки : лаборат. практикум по курсу "Теория оптимал. управления" / И. В. Семушин, Ю. В. Цыганова. Ульяновск : УлГТУ, 2001. Режим доступа: <a href="http://lib.ulsu.ru/MegaPro/Download/MObject/990/4">http://lib.ulsu.ru/MegaPro/Download/MObject/990/4</a> Semushin smo.pdf
- 2. Кожевникова, И. А. Стохастическое моделирование процессов: учебное пособие для вузов / И. А. Кожевникова, И. Г. Журбенко. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 148 с. (Авторский учебник). ISBN 978-5-534-09989-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: <a href="https://urait.ru/bcode/439020">https://urait.ru/bcode/439020</a>
- 3. Соколов С.В., Методы идентификации нечетких и стохастических систем / С.В. Соколов, С.М. Ковалев, П.А. Кучеренко, Ю.А. Смирнов М.: ФИЗМАТЛИТ, 2017. 572 с. ISBN 978-5-9221-1768-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785922117685.html
- 4. Соколов С.В., Методы идентификации нечетких и стохастических систем / С.В. Соколов, С.М. Ковалев, П.А. Кучеренко, Ю.А. Смирнов М.: ФИЗМАТЛИТ, 2017. 572 с. ISBN 978-5-9221-1768-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785922117685.html
- 5. Семушин, Иннокентий Васильевич.Стохастические модели, оценки и управление : раздел: Детерминистские модели динамических систем: метод. пособие / Семушин Иннокентий Васильевич, Ю. В. Цыганова; УлГУ. Ульяновск: УлГУ, 2007.

#### учебно-методическая:

Форма А Страница 19из 22



1. Семушин И. В. Методические рекомендации для семинарских (практических) занятий, лабораторного практикума и самостоятельной работы по дисциплинам «Численные методы», «Методы вычислений» и «Вычислительная математика» для студентов направлений 09.03.03 «Прикладная информатика», 02.03.03 - «Математическое обеспечение и администрирование информационных систем» / И. В. Семушин, Ю. В. Цыганова; УлГУ, ФМИиАТ. - Ульяновск : УлГУ, 2019. - Загл. с экрана; Неопубликованный ресурс. - Электрон. текстовые дан. (1 файл : 2,09 МБ). - Текст : электронный. http://lib.ulsu.ru/MegaPro/Download/MObject/9072

#### б) Программное обеспечение

Для образовательного процесса по данной дисциплине необходим стационарный класс ПК с установленным следующим программным обеспечением:

- операционная среда ОС Windows/ ALT Linux;
- системы программирования на языках C/C++ (Code::Blocks).
- система программирования Scilab.

#### в) Профессиональные базы данных, информационно-справочные системы

#### 1. Электронно-библиотечные системы:

- 1.1. IPRbooks : электронно-библиотечная система : сайт / группа компаний Ай Пи Ар Медиа. Саратов, [2020]. URL: <a href="http://www.iprbookshop.ru">http://www.iprbookshop.ru</a>. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. ЮРАЙТ: электронно-библиотечная система: сайт / ООО Электронное издательство ЮРАЙТ. Москва, [2020]. URL: <a href="https://www.biblio-online.ru">https://www.biblio-online.ru</a>. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.3. Консультант студента : электронно-библиотечная система : сайт / ООО Политехресурс. Москва, [2020]. URL: http://www.studentlibrary.ru/catalogue/switch\_kit/x2019-128.html. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.4. Лань : электронно-библиотечная система : сайт / ООО ЭБС Лань. Санкт-Петербург, [2020]. URL: <a href="https://e.lanbook.com">https://e.lanbook.com</a>. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. **Znanium.com**: электронно-библиотечная система: сайт / ООО Знаниум. Москва, [2020]. URL: http://znanium.com. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. Clinical Collection: коллекция для медицинских университетов, клиник, медицинских библиотек // EBSCOhost: [портал]. URL: http://web.a.ebscohost.com/ehost/search/advanced?vid=1&sid=e3ddfb99-a1a7-46dd-a6eb-2185f3e0876a%40sessionmgr4008. Режим доступа: для авториз. пользователей. Текст: электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2020].

#### 3. Базы данных периодических изданий:

- 3.1. База данных периодических изданий : электронные журналы / ООО ИВИС. Москва, [2020]. URL: https://dlib.eastview.com/browse/udb/12. Режим доступа : для авториз. пользователей. Текст : электронный.
- 3.2. eLIBRARY.RU: научная электронная библиотека: сайт / ООО Научная Электронная Библиотека. Москва, [2020]. URL: <a href="http://elibrary.ru">http://elibrary.ru</a>. Режим доступа: для авториз. пользователей. Текст: электронный
- 3.3. «Grebennikon» : электронная библиотека / ИД Гребенников. Москва, [2020]. URL: <a href="https://id2.action-media.ru/Personal/Products">https://id2.action-media.ru/Personal/Products</a>. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4. Национальная электронная библиотека** : электронная библиотека : федеральная государственная информационная система : сайт / Министерство культуры РФ ; РГБ. Москва, [2020]. URL: <a href="https://нэб.рф">https://нэб.рф</a>. Режим доступа : для пользователей научной библиотеки. Текст : электронный.

Форма А Страница 20из 22

**5.** <u>SMART Imagebase</u> // EBSCOhost : [портал]. – URL: https://ebsco.smartimagebase.com/?TOKEN=EB-SCO-1a2ff8c55aa76d8229047223a7d6dc9c&custid=s6895741. – Режим доступа : для авториз. пользователей. – Изображение : электронные.

#### 6. Федеральные информационно-образовательные порталы:

- 6.1. <u>Единое окно доступа к образовательным ресурсам</u> : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: <a href="http://window.edu.ru/">http://window.edu.ru/</a>. Текст : электронный.
- 6.2. <u>Российское образование</u>: федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: <a href="http://www.edu.ru">http://www.edu.ru</a>. Текст: электронный.

#### 7. Образовательные ресурсы УлГУ:

7.1. Электронная библиотека УлГУ: модуль АБИС Мега-ПРО / ООО «Дата Экспресс». – URL: <a href="http://lib.ulsu.ru/MegaPro/Web">http://lib.ulsu.ru/MegaPro/Web</a>. – Режим доступа: для пользователей научной библиотеки. – Текст: электронный.

| ~  |      |          |    |    |   |    |    |   |
|----|------|----------|----|----|---|----|----|---|
| Co | TT   | P        | CI | TD | 2 | LI | 1  | ٠ |
|    | I JI | $\alpha$ | -  | JD |   | п. | ., | _ |

Зам. начальника УИТиТ / Клочкова А.В. Должность сотрудника УИТиТ подпись ФИ

#### 12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории для проведения лекций, семинарских занятий, для проведения лабораторных работ, для проведения текущего контроля и промежуточной аттестации.

Аудитории укомплектованы специализированной мебелью, учебной доской. Аудитории для проведения лекций оборудованы мультимедийным оборудованием для представления информации большой аудитории. Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа к электронной информационно-образовательной среде, электронно-библиотечной системе.

Аудитория для проведения лабораторных занятий: помещение укомплектовано ученической доской и комплектом мебели. Компьютеры, Wi-Fi с доступом к сети «Интернет», ЭИОС, ЭБС. Проектор, экран. 432017, Ульяновская область, г. Ульяновск, ул. Набережная реки Свияги, д. 106 (1,3 корпус).

Технические средства обучения: компьютеры с программным обеспечением:

- операционная среда ОС Windows/Linux;
- системы программирования на языках Си/С++ (Code::Blocks).
- система программирования Scilab.

#### 13. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
  - для лиц с нарушениями слуха: в печатной форме; в форме электронного документа;

Форма А Страница 21из 22

| Министерство науки и высшего образования Российской Федерации<br>Ульяновский государственный университет | Форма |  |
|----------------------------------------------------------------------------------------------------------|-------|--|
| Ф-Рабочая программа по дисциплине                                                                        |       |  |

видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации;

– для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационно-образовательной среде с учетом их индивидуальных психофизических особенностей.

Разработчик \_\_\_\_\_\_ Трофессор Семушин И.В. ФИО

Форма А Страница 22из 22